59 research outputs found

    Multiple cysticerci as an unusual cause of mesenteric lymph node enlargement: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Cysticercosis is a disease caused by infestation with the larval stage of the intestinal cestode <it>Taenia solium</it>. The parasite usually localizes to subcutaneous tissues and muscles causing palpable or visible nodules, to the brain leading to epileptic attacks, and to the eyes with visible nodules leading to blindness and atrophy.</p> <p>Case presentation</p> <p>Here we present the case of a 15-year-old girl who was incidentally detected as having mesenteric lymph node enlargement caused by multiple cysticerci. This is the second case report of lymph node enlargement due to cysticercus infestation.</p> <p>Conclusion</p> <p>This rare mode of presentation of cysticercus infestation highlights the importance of parasites as a cause of treatable lymph node enlargement.</p

    Normal Mouse Intestinal Epithelial Cells as a Model for the in vitro Invasion of Trichinella spiralis Infective Larvae

    Get PDF
    It has been known for many years that Trichinella spiralis initiates infection by penetrating the columnar epithelium of the small intestine; however, the mechanisms used by the parasite in the establishment of its intramulticellular niche in the intestine are unknown. Although the previous observations indicated that invasion also occurs in vitro when the infective larvae are inoculated onto cultures of intestinal epithelial cells (e.g., human colonic carcinoma cell line Caco-2, HCT-8), a normal readily manipulated in vitro model has not been established because of difficulties in the culture of primary intestinal epithelial cells (IECs). In this study, we described a normal intestinal epithelial model in which T. spiralis infective larvae were shown to invade the monolayers of normal mouse IECs in vitro. The IECs derived from intestinal crypts of fetal mouse small intestine had the ability to proliferate continuously and express specific cytokeratins as well as intestinal functional cell markers. Furthermore, they were susceptible to invasion by T. spiralis. When inoculated onto the IEC monolayer, infective larvae penetrated cells and migrated through them, leaving trails of damaged cells heavily loaded with T. spiralis larval excretory-secretory (ES) antigens which were recognized by rabbit immune sera on immunofluorescence test. The normal intestinal epithelial model of invasion mimicking the natural environment in vivo will help us to further investigate the process as well as the mechanisms by which T. spiralis establishes its intestinal niche

    Trichinella inflammatory myopathy: host or parasite strategy?

    Get PDF
    The parasitic nematode Trichinella has a special relation with muscle, because of its unique intracellular localization in the skeletal muscle cell, completely devoted in morphology and biochemistry to become the parasite protective niche, otherwise called the nurse cell. The long-lasting muscle infection of Trichinella exhibits a strong interplay with the host immune response, mainly characterized by a Th2 phenotype

    A Novel Secretory Poly-Cysteine and Histidine-Tailed Metalloprotein (Ts-PCHTP) from Trichinella spiralis (Nematoda)

    Get PDF
    BACKGROUND: Trichinella spiralis is an unusual parasitic intracellular nematode causing dedifferentiation of the host myofiber. Trichinella proteomic analyses have identified proteins that act at the interface between the parasite and the host and are probably important for the infection and pathogenesis. Many parasitic proteins, including a number of metalloproteins are unique for the nematodes and trichinellids and therefore present good targets for future therapeutic developments. Furthermore, detailed information on such proteins and their function in the nematode organism would provide better understanding of the parasite-host interactions. METHODOLOGY/PRINCIPAL FINDINGS: In this study we report the identification, biochemical characterization and localization of a novel poly-cysteine and histidine-tailed metalloprotein (Ts-PCHTP). The native Ts-PCHTP was purified from T. spiralis muscle larvae that were isolated from infected rats as a model system. The sequence analysis showed no homology with other proteins. Two unique poly-cysteine domains were found in the amino acid sequence of Ts-PCHTP. This protein is also the first reported natural histidine tailed protein. It was suggested that Ts-PCHTP has metal binding properties. Total Reflection X-ray Fluorescence (TXRF) assay revealed that it binds significant concentrations of iron, nickel and zinc at protein:metal ratio of about 1:2. Immunohistochemical analysis showed that the Ts-PCHTP is localized in the cuticle and in all tissues of the larvae, but that it is not excreted outside the parasite. CONCLUSIONS/SIGNIFICANCE: Our data suggest that Ts-PCHTP is the first described member of a novel nematode poly-cysteine protein family and its function could be metal storage and/or transport. Since this protein family is unique for parasites from Superfamily Trichinelloidea its potential applications in diagnostics and treatment could be exploited in future

    Characterisation of the Trichinella spiralis deubiquitinating enzyme, TsUCH37, an evolutionarily conserved proteasome interaction partner.

    Get PDF
    Trichinella spiralis is a parasitic nematode that infects mammals indiscriminately. Although the biggest impact of trichinellosis is observed in developing countries, the parasite is found on all continents except Antarctica. In humans, Trichinella infection contributes globally to helminth related morbidity and disability adjusted life years. In animals, infection is implicated as a serious agricultural problem and drug treatment is largely ineffective. During chronic infection, larvae invade skeletal muscle cells, forming a nurse cell complex in which they become encysted. The nurse cell is a product of the severe disruption of the host cell homeostasis. Proteins of the Ub/proteasome pathway are highly conserved throughout evolution, and considering their importance in the regulation of cell homeostasis, provide interesting and novel therapeutic targets for various diseases. In order to target this system in parasites, pathogen proteins that play a role in this pathway must be identified. We report the identification of the first T. spiralis deubiquitinating enzyme, and show evidence that the function of this protein as a proteasome interaction partner has been evolutionarily conserved. We show that members of this enzyme family are important for T. spiralis survival and that the use of inhibitor compounds may help elucidate their role in infection
    corecore